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Spurious numerical solutions of problems with closed sub-characteristics by upwind 
difference schemes, in particular problems of recirculating incompressible flow at high 
Reynolds numbers, are proved to be due to the anisotropy of the artificial viscosity. 
Numerical examples are presented to show that even very simple problems, including basic 
problems in fluid dynamics, are not approximated well by schemes with anisotropic artificial 
viscosity, regardless of numerical parameters. ‘&, 1991 Academic Press, Inc. 

1. INTRODUCTION 

Numerical methods for solving incompressible fluid flow equations are frequently 
tested on problems of recirculating flow. Quite often results obtained by different 
methods differ from each other significantly. Reliable experimental data is usually 
difficult to obtain, and discrepancies between numerical two-dimensional solutions 
and experimental data may be the result of the influence of walls in the experiments. 

The problems in solving recirculating incompressible flows at high Reynolds 
numbers are well known. Several researchers have pointed out that some of the 
methods employed to obtain stable discretization, e.g., upwind differencing, may 
lead to spurious results. Such results have been attributed to excessive artificial 
viscosity in the numerical scheme, to multiple solutions of the non-linear set of 
algebraic equations that is obtained from the numerical scheme, and to poor resolu- 
tion by grids that are too coarse [2, 4, 51. But spurious results occur even when 
none of these reasons are valid. Indeed, a single linear partial differential equation 
may exhibit such behavior when the sub-characteristics are closed. This is true even 
when the mesh size is small enough to easily resolve the solution and truncation 
errors are genuinely small everywhere, and even when the differential solution does 
not depend on the size of the viscosity coefficient at all. 

It is well known that the problem of shear driven recirculating flow is not well 
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posed when the viscous terms vanish. The system then loses its ellipticity, and the 
boundary conditions are no longer appropriate [I 1. Thus, the viscous terms mai 
play an important role in determining the solution throughout the domakr, even 
when their absolute values tend to zero. In effect, when the coeffkient of viscosity 
is small (high Reynolds numbers), the convection terms dictate the behavior of the 
solution aiong the streamlines, while the viscosity determines its variation CCCPO.T.T 
streamlines. Since the boundary itself is a streamline. the propagation of information 
from :he boundary into the domain is governed by the viscous terms, no matter 
how small their coefficients may be. Hence, the maxer in which these coefficients 
tend to zero may effect the solution significantly. Anisotropic artificial viscosity, 
i.e., different coefficients for the second derivative terms may produce results thar 
differ considerably from isotropic viscosity solutions to the &,,erential problem. 
Obviously, this is equally true for linear problems and is independent of numerkcaI 
parameters such as coarseness of the grid. 

It should be noted that the phenomenon presented here is only possible in two 
or more dimensions. Since there is no one-dimensional analogue of recircu!ation, 
the particular ill-posedness described does not occur in one dimension. Also, the 
problems do not appear when the grid is consistently aligned with the characteristic 
directions, and the concept of non-alignment is not present rn one-dimensional 
problems. 

2. SPURIOUS UPWIND SOLUTION FOR A LINEAR PDE 

In order to give an indication of difficulties that arise even kr relatively simple 
cases of problems with closed sub-characteristics, we consider the following 
equation and boundary conditions, written in polar coordinates (r, 19): 

where 

is the Laplacian, E a positive constant, and Q is disk of radius b with a circular hole 
of radius a in its center. Ul and U, are given constants. 

The unique solution of (2.1), easily obtained by separation of variables, is 
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It is seen that the solution is constant over the circular sub-characteristics. While 
it is independent of E (in the special case of constant boundary values), its 
cross-characteristic behavior is nonetheless determined by the diffusive terms. 

In order to see what might go wrong with the numerical solution of this problem, 
we rewrite the equation in Cartesian coordinates (x, y), 

Y au x au 
--E AU------- +- -= 

x2 + y2 ax x2 + y2 ay 0, 

where A = d2/dx2 + a’/&)‘. 
As is well known, discretization of this equation by central finite differences loses 

its stability when E is small compared to the product of the mesh size and the 
absolute value of either coefficient of the first derivatives in the equation. A 
common practice is to retain stability by increasing the absolute values of the 
coefftcients of the discretized second derivatives. A particular method of this 
type is first-order upwind differencing. In effect, this sort of discretization gives a 
second-order approximation to the equation 

where s1 and s2 are functions of x and y. Transforming back to polar coordinates, 
we obtain 

(2.5) 

where, in the particular case of lirst-order upwing differencing, E, = E + (hJ2r) 1 sin 81 
and s2 = E + (h,/2r) lcos 81, h, and hY being the mesh sizes in the x and y directions, 
respectively. We choose for simplicity h, = 1z,, = h. Note that problems of instability 
occur only when E is small compared to A. Thus, we assume E< k/2, since otherwise 
artificial viscosity is unnecessary. The exact bound on E with respect to h is not 
crucial in the proof below, but it is important that h be at least O(E). If the mesh 
size is much smaller than E, the problems described will not occur. But such mesh 
sizes are very much smaller than is necessary to obtain good resolution and 
therefore yield extremely inefficient solvers. Hence, the range of mesh sizes 
examined is precisely that for which upwind differencing is useful. 

Let us now define the function V to be the difference between the solutions of 
(2.5) and (2.1). From (2.2) we obtain the following differential equation for V, after 
substituting the expressions for s1 and c2 and multiplying by 2r/h, 
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where 

f(6) = lsin B cosz 19 + lcos 0 sin’ (3 

g(B) = Icos3 81 + Isin 01 

k(B)=sin26.(IcosC?-Isin81) 

!~(6)=g(B)-f(B)=(~cos8~+Isin8~).(Icos6~-~sin6~)‘~1-Isin2@~~O 

u, - ui 
C=- 

ln(b/a) . 

Let us now consider a problem where the order of magnitude of C’, - Lij, Q, and 
b - CI is 1 (denoted 0( 1)) as h --) 0. A similar, albeit more lengthy calculation can 
be made for greater mesh sizes too, but it is not of practical interest. 

We now show that V is of substantial size throughout 4 except near the boun- 
daries, where it vanishes, of course. This implies that the upwind difference scheme 
cannot approximate (2.1) well, regardless of numerical parameters. The proof relies 
on the maximum principle, which enables us to bound I’ from below by a polyno- 
mial in the P variable, which is positive everywhere in the interior of $2. 

Proof The linear operator at the left-hand side of (2.6) is elliptic. We shah 
denote it by Y. Let us define 

(2.7) 

Our object is to choose ,u so that 

Due to the periodicity of m, W, and 9 we may restrict our calculations to 
y (2.6) it suffices to prove 
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i.e., 

where 

and 

{-6F(r, 0). [(1-~)‘-3r(l--)+1:~] 

-3G(r,t+i;(l--I-)(l-2r)}.r(l-r)~ 

<C(l-sin28)-~F(1-~)cos48-h~(r,8), 
r2 (2.9) 

F(r e) JW + 2&r/h g( 0) + Z&r/h 
> (b-a)’ ’ G(r’ @= (bya), 

c k(B) 2P- 1 1 _ 
-tG’,’ 

[ 
-+-r(l-7) cos40 
b-a I I 

+ 6 . [4n2F( r, 0) sin 2n? - 27tG( r, 0) cos 274. 

Consider the expression 

(C/r’)( 1 - sin 28) - (C/br) F( 1 - r) cos 48 

in the interior of the domain. The denominator is positive everywhere. Further- 
more, it is 0( 1) everywhere in the first quadrant except where Q + n/4 and 
i:( 1 - f) + 0, in which case 4 is negative. Therefore the right-hand side of (2.9) may 
be replaced by 

[ 
;u- sin28):?(1-i)cos48 .(1-O(h)). 

I 

Equating the 0 derivative of this expression to zero, we obtain 

[ 
--:+FF(l-Y)sin28 .c0s2e=o. 1 

For every a < r < b the minimum of the expression is obtained when 0 = n/4. It is 
enough, therefore, to choose ,D that will satisfy 

( - 6F( r, f3) . [ (1 - r)’ - 3~( 1 - r) + r’] - 3G( r, 8) . F( 1 - r)( 1 - 2~)) 

-p<+(h). 



INADEQUACY OF FIRST-ORDER j :- i i s 

The left-hand side terms can be estimated 

acd 

- 3G(r, f3) . Y( 1 - T)( 1 - 27) < -3 

from which we obtain that 

is sufficient to satisfy (2.8). Since V- W = 0 on the boundaries of S, and, by ihe 
maximum principle, cannot have a minimum in the interior, Y must be greater than 
W throughout Q. 

Thus it is proved that the upwind difference solution is totally inadequate, 
yielding an O(l) error everywhere except near the boundaries. In fact. since the 
maximum principle is generalizable to difference schemes. this proof may be apptied 
directly to the difference equations. 

3. INCOMPRESSIBLE NAVIER-STOKES 

It seems likely that the problems that occur in the case of a linear equation will 
be present, and even more so, in a coupled non-linear system. However, due to the 
greater complexity of the system and its solutions, these problems might be harder 
to identify and much harder to analyze. Still, even the simple and well-known 
problem of steady incompressible two-dimensional flow at high Reynolds numbers 
between concentric rotating cylinders can be shown nor to yield a first-order 
accurate solution when solved with upwind differencing on a Cartesian grid. The 
steady incompressible Navier-Stokes equations in Cartesian coordinates are 

3.h) 

where U,= and Cl,. are the velocities in the I and ~3 directions, respectively, P is the 
pressure variable, and E = l/R, R being the Reynolds number. Let us rewrite these 
equations with anisotropic viscosity coefftcients, 
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a’& 
-El ~-8 

where E~ and ~2 are functions of .x and J’. 
Transformations of system (3.1) to polar coordinates yields 

(3.2a) 

(3.2b) 

(3.k) 

(3.3a) 

(3.3b) 

(3.3c) 

U, and UB being the velocities in the r and 8 directions. Similarly, transformation 
of system (3.2) yields 

a37 
-(Ed cos2 19 + &2 sin* 8) -+ 

(3.4a) 

S(rUr) a6, 
-+==o. 

dr I 

(3.4bj 

(3.4c) 
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Let us consider the problem of flow between rotating cylinders of radii 2 and b, 
where 0 <a c b. Let us choose the boundary conditions so as to give a solution .of 
zero in vorticity to system (3.3), i.e., 

U,( )‘ = a, e ) = 0, U,(r=a, a)= v/o. 

U,( Y = b, e1 = 0, U&r = 6, 0) = V/b, 

V being a constant, System (3.3) with the above boundary conditions has the exact 
so’nution; 

The numerical solution of this problem with an upwind difference scheme on a 
Cartesian grid involves a second-order accurate approximation of system (3.4) with 
El=E++lL’,lt. I, and s2 = E + ;I U,./ h,., where h, and h,. are the mesh sizes in the .‘c 
and J* directions, respectively. For simplicity we shall assume below that h ~ = i!?, = h. 

If the solution of the numerical system of equations is to yield a First-crder 
approximation to the differential problem, then the difference between the differen- 
tial solutions of systems (3.3) and (3.4) must clearly tend to zero with h, and at the 
same rate at least. Let us define accordingly, 

and assume that u,, Us, and ,C tend to zero with A. Thus, we may neglect the terms 
involving products of these variables and h in the caiculation (since they can m:ly 
add to (3.10) terms that are at most of the same order of magnitude as its first 
term) and assume 

wsin el + E, 
Vh ICOS Bj 

El = 
21 

E? = 
2r 

+ 6. 

Substitution into (3.4b) yields 

J(O), g(0), and k(B) defined as in (2.6). 
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Integration of (3.7) along circles of radii P, a d Y Q 6, yields 

where g’(6) and g”(O), the first and second derivatives of g(B), result from integra- 
tion by parts. Note that they are bounded throughout 52. From the symmetry of the 
equations, and indeed the problem itself, the solutions 24, v, and p are periodic over 
an interval of ~$2, which accounts for the vanishing of the term multiplied by k(B) 
in (3.7). Defining 

r 

2n 
K(T) = s’(Q) u, de 

‘0 

277 
f!(r) = 

5 
g”(Q) uo de, 

0 

multiplying (3.8) by r and exchanging the orders of integration and differentiation 
we obtain 

Let us define 

We now integrate (3.9) thrice (for explicit calculation see Appendix A), and 
estimate the various terms. For E that is not large compared to V./z, we obtain the 
following equation in orders of magnitude: 
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Were K is a constant that results from integration by parts. and the equation hoids 
for any value of R between a and 6. 

Since the right-hand side of (3.10) varies by O(h) for different dues of I?!, 3 is 

clear that the k, norms of II,. and ue cannot be O(h) as well, In fact one of them 
at least must be O(,:‘i) or larger. Actually, there is nothing to suggest that !L,, and 
u6 converge to zero at all. 

4. NUMERICAL EXAMPLES 

4.1. Litlear Equation 

Since problems with circular sub-characteristics will normally be solve 
coordinates, in which case the difficulty described above does not appear due 10 
consistent alignment, a more natural domain Q for Cartesian representation was 
chosen in the numerical example: a square of side 1 centered at the origin with a 
hole in its middle, such that both the inner and the outer boundaries are sub- 
characteristics. The partial differential equation and boundary conditions 

were solved, where 

and 

are the inner and outer boundaries of Q, respectively. F(I, ~1) = sin TTY cos ZY and 
6(x, y) = -cos TCJJ sin TC.Y were chosen so as to give contours of COSJX cos TTY as the 
closed sub-characteristics (Fig. 1). 

The equations were discretized on a uniform Cartesian grid of mesh size h in both 
.Y and )’ directions, except at the inner boundary, where grid points were defined on 
the boundary. Several values of h were tried, the finest being A. The second-order 
five point star scheme was used for the Laplacian, and the discretization was 
modified near the inner boundary, where appropriate, in accordance with the 
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FIG. 1. Sub-characteristics of (4.1). 

reduced mesh size. For example, away from the inner boundary the second x 
derivative of Ui,j was approximated by 

but near the inner boundary, where, say, node (i - 1, j) is at distance 6k from node 
(i, j), with 0 < 6 < 1, the approximation was modified to 

pu. 
+z 2 

ax- (a + 6’) h2 
(Ui-l.-;-(1+6) ui.j+6ui+L,j). 

Analogous modifications were made for points where the mesh size to the right of 
the point of discretization was on the boundary and for y derivatives. 

F(x, u) and G(x, ~1) were injected, and the resulting set of linear algebraic equa- 
tions was solved iteratively until residuals were reduced below 10P4. 

Due to the smoothness of the solution, even relatively coarse grids provided 
excellent approximations to the fine grid solution. Also, there was very little 
dependence on the magnitude of 6, so long as it was not large compared to k. 
However, the upwind solution differed quite considerably from the solution 
obtained with isotropic diffusivity regardless of the mesh size, as predicted. 

In Fig. 2 the solutions along the x axis from the outer boundary to the inner 
boundary are compared. The results depicted are virtually indistinguishable for any 
k < & and E < 0. lh and clearly show that the upwind solutions are totally inade- 
quate. 
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t 

FIG. 2. Solution of (4.1 i along centerline: A, upwind diffcrencing; I, Isorropic artificial viscosity. 

I.0 / I / 

05 

0.01 ’ 4 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ i 

FIG. 3. Velocity along centerline. Comparison of numerical solulions of the incompressible 
NavierPStokes equations by two different discretizations on progressively finer grids, fron; 32 by ii fccr 
solutions A at?d 1 to 128 by 128 for solutions C and 3. Solutions A, 8, and C were obtained with 
isotropic artificial viscosity, and solutions 1, 2. 3. and S were obtained with lupw-ind differencing. S sclved 

on a grid of 256 by 256 and corrected to second-order accuracy by defect corrections. 
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4.2. Incompressible Navier-Stokes System 

The code described in [3], which had produced results that compared well with 
several published solutions of the driven cavity problem at high Reynolds numbers, 
was employed to depict the inadequacy of the upwind difference scheme in recir- 
culating flow. In order to separate between the different aspects that are present in 
the driven cavity problem, many of which are caused by boundary layers, and yet 
retain simplicity of the domain and alignment of grid lines with the boundaries, the 
following model problem was chosen: steady incompressible flow in a square cavity 
of side 1, with a square hole of side $ in its middle. The boundaries are all parallel 
to the Cartesian grid lines. The tangential velocities at the outer walls are given by 
u, = sin 7~5, i varying from 0 to 1 along the wall, and U, driving the flow in a clock- 
wise direction. The normal velocities at the outer walls and all velocities at the inner 
walls are equal to zero. 

The problem was solved on grids varying from 32 by 32 to 128 by 128 grid intervals 
with both an upwind difference scheme and isotropic artificial viscosity. A second- 
order solution was computed on a 256 by 256 grid using upwind differencing and 
cycles of defect corrections. It is clear from Fig. 3 that the upwind solutions are very 
unsatisfactory on all grids, particularly coarse ones. 

5. CONCLUSION 

The proofs and the numerical examples make it clear that anisotropic artificial 
viscosity may lead to erroneous results, even in the most basic of problems, where 
exact solutions can be obtained. The bad approximation often goes unnoticed for 
two main reasons. One is that most interesting problems have solutions with 
boundary layers, the resolution of which requires small cross-sream viscosity, which 
is easily obtainable by upwind differencing when streamlines are aligned with the 
grid. In such cases the upwind difference results may be considerably better than 
those obtained with isotropic viscosity on the same grid. The other reason is that 
the error caused by anisotropic artificial viscosity is strongly dependent on the 
curvature of the solution. In fact, in some other common cases the anisotropic 
viscosity scheme can be shown to converge to the correct solution. 

We make no claim that upwind difference schemes should not be used in recir- 
culating flow problems. However, since the first-order upwind scheme does not, in 
the general case, yield first-order accurate solutions, it is doubtful whether it is the 
most efficient tool to be used for reaching the ultimate goal of second-order solu- 
tions to general incompressible flow problems in just a few minimal work units. 
Higher order upwind schemes may of course yield better solutions, but there are 
many well-known problems associated with high-order schemes. Moreover, it is still 
important that the cross-stream behavior be determined by physical-like viscosity in 
certain recirculating flow problems. 
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6. A NOTE ON MULTIGRID RESEARCH 

The trouble reported herein was first detected while attempting to develop fast 
multigrid solvers for high-Reynolds incompressible flows with separation and Bows 
kr closed vessels. Slow multigrid convergence for such flows has bothered severai 
researchers (usually without their being conscious of the underlying reason: most 
investigators are generally all too easily resigned to having very graded mu&grid 
performances.) Upon examination we traced the problem to the poor approxima- 
tion obtained for such flows by upwind differencing. The bad discretization breeds 
poor multigrid convergence (since coarse grids do not yield proper approximatrons 
to smooth fine-grid errors), but, more important, it is a trouble by itself, which vt’as 
not sufficiently recognized before. 

This, in fact. is another good reason for using multigrid solvers: they force one 
to use good discretization schemes. A bad discretization will not pass unnoticed. 
since it is detected by the multigrid convergence rates. The imphcations of the 
findings reported herein for the design of multigrid solvers will be describe2 
elsewhere. 

APPENDIX A 

Choosing c large enough, say 10, three integrations of the terms in 13.9) yield 

j; j; j<I (rcp’( r) j’ dr ds dr 

with 

C+‘(r) - q’(r)] dr ds df 
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with 

R f s 

s ss 
[r(ry’(r))’ -y(r)] dr ds dt 

a 
a r) 

= [s’y’(s) - u2y’(a) - sy(s)] ds dt 

(R-a)2 
= ----~2f(a)+~Rt2~(t)d-~R~*3~~(~)d~dt 

2 a a n 

t2~~(t)dt-~Rji3sy(S)dsdt 64R~+~ll 
n L2 

~u,(r, 6) 
r2ur(r, 0) 3r ~ + ru,(r, 0) . z+(r, 0) 

1 
dQ dr ds dt 

s~u,(s, 0) . ud.3, e) 

5 

-I[ 

f%(r, e) ru,(r, e) + r2 ___ ug dr de ds dt 
a i?r 1 I 

R f .2ri 

= 
s SJ ?LL,(S, e) . u&, e) de ds dt 
a a 0 

+ jR j’ j’ j:’ ; d(uei; e))’ de nr ds dt. 
a a a 

(A3) 

(A4) 

C-45) 

The last term, obtained by substitution from (3.4~) and (3.6), vanishes in the 
integration with respect to 0, and 

R f 2n 11 ss s%,(s, e) . ZL&, ej de ds dt 
a a 0 

d s R tll~r~sll dtcg Ib4r~,ll G; Ilurll . lld 
D 

and, finally, 

R2-a2 
7 dr ds dt = ___ - 

2a 
RlnR 

a’ (A61 
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